Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Sucheta D’Sa

Sucheta D’Sa

Charles River Laboratories, USA

Title: Promising immunotherapeutic strategies for RSV infection

Biography

Biography: Sucheta D’Sa

Abstract

The respiratory syncytial virus (RSV) is highly prevalent in children and manifests itself in the form of bronchiolitis and pneumonia. Due to the failure of several vaccination trials using the inactivated form of the virus there is a need for a safe and effective vaccine. One of the major proteins present in the virus, is the fusion protein F, which can be integrated into a virus-like particle (VLP), yielding a highly immunogenic F-VLP antigen. Novel adjuvants that contain immunoenhancer molecules are now co-administered with human vaccines either licensed or in clinical trials. Adjuvants approved for human use were tested along with the microparticulate vaccine to improve the magnitude and longevity of the adaptive immune response. In this study, the F-VLP antigen was incorporated into a biodegradable polymer matrix and its in vitro immunogenicity was evaluated in a mechanistic study to evaluate surface co-stimulatory expression, wherein antigen presenting cells were stimulated with the vaccine-adjuvant combinations. Particulate vaccines with or without adjuvants significantly increase expression of immune markers such as nitric oxide and resulted in enhanced cell-surface expression of CD80/86, CD40, MHC II and CD54/ICAM-I on dendritic cells. In vivo studies using the non-invasive transdermal route demonstrated elevated humoral and cell-mediated immune responses in a mouse model. These preliminary studies prove the efficacy of the RSV F-VLP microparticulate vaccine as a novel immunotherapeutic strategey in the future development of a vaccine against RSV.